刘飞

时间:2024-09-08浏览:49

[1] L. Ren, Y. Zhao, J. Li, F. Liu, B. Liu, G. Wu, C.J. Boehlert, Z. Shan, Inhibiting creep in fine-grained Mg Al alloys through grain boundary stabilization, Journal of Magnesium and Alloys (2024) S2213956724001634. https://doi.org/10.1016/j.jma.2024.04.033.

[2] L. Luo, S.J. Liu, W. Shi, H. Fu, F. Liu, S. Xiang, The formation mechanism of the nano-equiaxed (α+β) duplex phases structure during aging process after high pressure torsion deformation, Materials Today Communications 40 (2024) 109788. https://doi.org/10.1016/j.mtcomm.2024.109788.

[3] Z. Liu, W. Shi, S. Xiang, F. Liu*, U. Ramamurty, Influence of OH− on the initiation and growth mechanism of pore structure during microarc oxidation of Ti-6Al-4 V alloy, Surface and Coatings Technology 487 (2024) 130985. https://doi.org/10.1016/j.surfcoat.2024.130985.

[4] X. Li, C. Huang, J. Yang, F. Liu, S. Wei, M. Wan, F. Zhao, Y. Zhao, Optimization of quasi-β forging parameters to control trimodal microstructure parameters and performance of TC21 forgings, Materials Science and Engineering: A 909 (2024) 146824. https://doi.org/10.1016/j.msea.2024.146824.

[5] G. Chen, F. Liu*, F. Chen, Y. Tan, Y. Cai, W. Shi, X. Ji, S. Xiang, Ultrahigh strength-ductility synergy via heterogeneous grain structure and multi-scale L12-γ′ precipitates in a cobalt-based superalloy GH159, Materials Science and Engineering: A 904 (2024) 146687. https://doi.org/10.1016/j.msea.2024.146687.

[6] F. Chen, F. Liu*, Y.-B. Tan, W. Shi, S. Xiang, Breaking the strength-ductility trade-off via heterogeneous structure in FeCoCrNiMo0.2 high-entropy alloy, Journal of Materials Research and Technology 29 (2024) 265–275. https://doi.org/10.1016/j.jmrt.2024.01.037.

[7] Y. Cai, F. Liu, Y. Tan, L. Wang, X. Ji, S. Xiang, Synergy effect of multi-strengthening mechanisms in CoNiCr-based high-entropy superalloy at cryogenic temperature, Materials Science and Engineering: A (2024) 146531. https://doi.org/10.1016/j.msea.2024.146531.

[8] D. Zhao, F. Liu, Y.-B. Tan, W. Shi, S. Xiang, Improving the strength-ductility synergy and corrosion resistance of Inconel 718/316L dissimilar laser beam welding joint via post-weld heat treatment, Journal of Materials Research and Technology 26 (2023) 71–87. https://doi.org/10.1016/j.jmrt.2023.07.202.

[9] Y. Yang, F. Liu, K. Chen, B. Liu, Z. Shan, B. Li, Dissociation of edge and screw pyramidal I and II dislocations in magnesium, Journal of Magnesium and Alloys (2023) S2213956723001342. https://doi.org/10.1016/j.jma.2023.06.013.

[9] F. Liu, Yu-Han Tian, Yao-Feng Li, Bo-Yu Liu, Zhi-Wei  Shan, Experimental Observation of <c+a> Dislocations on {-12-11} Plane in Submicron Magnesium, TMS Annual Meeting & Exhibition, 2024, 91-93.

[11] P. Deng, S. Xiang, Q. Ran, Y.-B. Tan, F. Liu, Influence of Heat Input on Microstructure and Mechanical Properties of Laser Welding GH4169 Bolt Assembly—Numerical and Experimental Analysis, Adv Eng Mater (2023) 2300309. https://doi.org/10.1002/adem.202300309.

[12] F. Chen, Y.-B. Tan, S. Xiang, W. Shi, F. Liu*, Enhanced strengthening effect via nano-twinning in cryo-rolled FeCoCrNiMo0.2 high-entropy alloys, Materials Science and Engineering: A 866 (2023) 144676. https://doi.org/10.1016/j.msea.2023.144676.

[13] F. Chen, F. Liu*, Y.-B. Tan, W. Shi, S. Xiang, Achieving excellent strength-ductility synergy via high density dislocation and nano-twinning in cryo-rolled FeCoCrNiMo0.2 high-entropy alloy, Journal of Materials Research and Technology (2023) S223878542301815X. https://doi.org/10.1016/j.jmrt.2023.08.003.

[14] N. Yang, B.-Y. Liu, F. Liu, Z.-W. Shan, The cross-transition of deformation twinning in magnesium, Scripta Materialia 206 (2022) 114231. https://doi.org/10.1016/j.scriptamat.2021.114231.

[15] B.-Y. Liu, Z. Zhang, F. Liu, N. Yang, B. Li, P. Chen, Y. Wang, J.-H. Peng, J. Li, E. Ma, Z.-W. Shan, Rejuvenation of plasticity via deformation graining in magnesium, Nat Commun 13 (2022) 1060. https://doi.org/10.1038/s41467-022-28688-9.

[16] S. Chen#, F. Liu#, B. Liu, X. Chen, X. Ke, M. Zhang, X. Tang, P. Guan, Z. Zhang, Z. Shan, Q. Yu, Reaching near-theoretical strength by achieving quasi-homogenous surface dislocation nucleation in MgO particles, Materials Today (2022) S1369702122000931. https://doi.org/10.1016/j.mattod.2022.04.007.

[17] F. Liu, B. Yang, B.-Y. Liu, J. Li, Z.-M. Chang, Z.-W. Shan, Producing Pure Magnesium Through Silicothermic Under the Atmospheric Pressure, in: J.B. Jordon, V. Miller, V.V. Joshi, N.R. Neelameggham (Eds.), Magnesium Technology 2020, Springer International Publishing, Cham, 2020: pp. 309–312. https://doi.org/10.1007/978-3-030-36647-6_46.

[18] B.-Y. Liu, F. Liu, B. Li, J.-F. Nie, Z.-W. Shan, In Situ TEM Investigation of <c+a> Dislocations in Magnesium, in: J.B. Jordon, V. Miller, V.V. Joshi, N.R. Neelameggham (Eds.), Magnesium Technology 2020, Springer International Publishing, Cham, 2020: pp. 135–139. https://doi.org/10.1007/978-3-030-36647-6_22.

[19] B.-Y. Liu, K.E. Prasad, N. Yang, F. Liu, Z.-W. Shan, In-situ quantitative TEM investigation on the dynamic evolution of individual twin boundary in magnesium under cyclic loading, Acta Materialia 179 (2019) 414–423. https://doi.org/10.1016/j.actamat.2019.08.043.

[20] B.-Y. Liu#, F. Liu#, N. Yang, X.-B. Zhai, L. Zhang, Y. Yang, B. Li, J. Li, E. Ma, J.-F. Nie, Z.-W. Shan, Large plasticity in magnesium mediated by pyramidal dislocations, Science 365 (2019) 73–75. https://doi.org/10.1126/science.aaw2843.